Induction of nitric oxide and respiratory burst response in activated goldfish macrophages requires potassium channel activity.
نویسندگان
چکیده
Potassium channel activity is important for modulating mammalian macrophage antimicrobial functions. The involvement of potassium channels in mediation of immune cell function in lower vertebrates, such as teleost, has not been explored. Since relatively little is known about the types of potassium channels present in fish macrophages, pharmacological blockers with broad ranges of activity were tested: 4-aminopyridine (4-AP), quinine, and tetraethylammonium chloride (TEA). The potassium channel blockers inhibited reactive nitrogen intermediates (RNI) and reactive oxygen intermediates (ROI) production by goldfish macrophages activated with bacterial lipopolysaccharide (LPS) and/or macrophage activating factor (MAF)-containing supernatants. Quinine was the most potent inhibitor with an IC(50) of 50 microM, while the other blockers, 4-AP and TEA, had IC(50) of 1.2 and 0.6mM, respectively. A reversible depolarization of the goldfish macrophage plasma membrane potential (Vm) was observed following treatments with potassium channel blockers, and was related to transcriptional changes in the inducible nitric oxide synthase gene (iNOS). Down-regulation of antimicrobial activities and depolarization of the goldfish macrophage plasma membrane were not a consequence of reduced cell number or viability, suggesting that potassium channels are required for generation of appropriate goldfish macrophage antimicrobial functions.
منابع مشابه
Microglia Kv1.3 channels contribute to their ability to kill neurons.
Many CNS disorders involve an inflammatory response that is orchestrated by cells of the innate immune system: macrophages, neutrophils, and microglia (the endogenous CNS immune cell). Hence, there is considerable interest in anti-inflammatory strategies that target these cells. Microglia express Kv1.3 (KCNA3) channels, which we showed previously are important for their proliferation and the NA...
متن کاملاثر عصاره هیدروالکلی زعفران بر فعالیت های ماکروفاژهای صفاقی رت
Background and purpose: Saffron (Crocus sativus) is a medicinal plant with anti-inflammatory effects. Macrophages are major cells that participate in inflammatory and immunity responses. The present study was performed to investigate the immunomodulatory effects of hydro-alcoholic extract of Saffron on rat peritoneal macrophages. Materials and methods: This experimental study was conducted in ...
متن کاملA Killer Potassium Channel
Microglia, the resident immune cells of the brain, are important determinants of CNS inflammation. They play defense in the healthy brain, but microglial activation can also lead to neuronal injury or death. The microglial potassium channel Kv1.3 is involved in microglial proliferation and in the respiratory burst that generates reactive oxygen species such as superoxide; thus Fordyce et al. ex...
متن کاملKinetics of Nitric Oxide Production and MTT Reduction by HSV-1 Infected Macrophages
Background: Macrophages have important role in defense against Herpes Simplex Virus type-1 (HSV-1). The present study was performed to determine the viability and nitric oxide (NO) production by HSV-1 infected mouse peritoneal macrophages (HIM). Method: The viability of macrophages was evaluated using MTT reduction assay and the production of nitrite using Griess method. Results: The ability of...
متن کاملA role for nitric oxide in hypoxia-induced activation of cardiac KATP channels in goldfish (Carassius auratus).
Hypoxia-induced shortening of cardiac action potential duration (APD) has been attributed in mammalian hearts to the activation of ATP-sensitive potassium (KATP) channels. Since KATP channels are also present at high densities in the hearts of vertebrate ectotherms, speculation arises as to their function during periods of reduced environmental oxygen. The purpose of the present study was to de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental and comparative immunology
دوره 26 5 شماره
صفحات -
تاریخ انتشار 2002